An application of the algorithmic of euclidean lattices to computer arithmetic : machine-efficient polynomial approximants

N. Brisebarre, S. Chevillard, G. Hanrot, J.-M. Muller, A. Tisserand and S. Torres Arénaire, LIP, É.N.S. Lyon

Interactions Mathématiques & Informatique à Montpellier 20/01/2010

Function evaluation on a machine

Problem: evaluation of a function φ over \mathbb{R} or a subset of \mathbb{R} .

We wish to only use additions, subtractions, multiplications (we should avoid divisions) \Rightarrow use of polynomials.

Most of the algorithms for evaluating elementary functions (exp, \ln , \cos , \sin , $\arctan, \sqrt{-}, \ldots$) use polynomial approximants.

Floating Point (FP) Arithmetic

Given

 $\left\{ \begin{array}{ll} \text{a radix} & \beta \geq 2, \\ \text{a precision} & n \geq 1, \\ \text{a set of exponents} & E_{\min} \cdots E_{\max}. \end{array} \right.$

A finite FP number x is represented by 2 integers:

- integer mantissa : M, $\beta^{n-1} \leq |M| \leq \beta^n 1$;
- exponent E, $E_{\min} \le e \le E_{\max}$

such that

$$x = \frac{M}{\beta^{n-1}} \times \beta^e.$$

We call real mantissa, or mantissa of x the number $m = M \times \beta^{1-n}$, such that $x = m \times \beta^e$.

We assume binary FP arithmetic (that is to say $\beta = 2$.)

IEEE precisions

http://babbage.cs.qc.edu/courses/cs341/IEEE-754references. html

	precision	minimal exponent	maximal exponent
single	24	-126	127
double	53	-1022	1023
extended double	64	-16382	16383
quadruple	113	-16382	16383

Evaluation of elementary functions

 $\exp, \ln, \cos, \sin, \arctan, \sqrt{-}, \dots$

First step. Argument reduction (Payne & Hanek, Ng, Daumas *et al*): evaluation of a function φ over \mathbb{R} or a subset of \mathbb{R} is reduced to the evaluation of a function f over [a, b].

Second step. Polynomial approximation of f:

- least square approximation;
- minimax approximation.

Minimax Approximation

Reminder. Let $g: [a,b] \to \mathbb{R}$, $||g||_{[a,b]} = \sup_{a \le x \le b} |g(x)|$.

We denote $\mathbb{R}_n[X] = \{p \in \mathbb{R}[X]; \deg p \le n\}.$

Minimax approximation: let $f : [a, b] \to \mathbb{R}$, $n \in \mathbb{N}$, we search for $p \in \mathbb{R}_n[X]$ s.t.

$$||p - f||_{[a,b]} = \inf_{q \in \mathbb{R}_n[X]} ||q - f||_{[a,b]}.$$

An algorithm by Remez gives *p* (minimax function in Maple, also available in Sollya http://sollya.gforge.inria.fr/).

Problem: we can't directly use minimax approx. in a computer since the coefficients of p can't be represented on a finite number of bits.

Our context: the coefficients of the polynomials must be written on a finite (imposed) number of bits.

Let $m = (m_i)_{0 \le i \le n}$ a finite sequence of rational integers.

Let $q(x) = q_0 + q_1 x + \cdots + q_n x^n \in \mathbb{R}_n[x]$. Each q_i must be an integer multiple of 2^{-m_i} : $q_i = a_i/2^{m_i}$ with $a_i \in \mathbb{Z}$.

Truncated Polynomials

Let $m = (m_i)_{0 \le i \le n}$ a finite sequence of rational integers. Let

 $\mathcal{P}_n^m = \{q = q_0 + q_1 x + \dots + q_n x^n \in \mathbb{R}_n[X]; q_i \text{ integer multiple of } 2^{-m_i}, \forall i\}.$

First idea. Remez $\rightarrow p(x) = p_0 + p_1 x + \dots + p_n x^n$. Every p_i rounded to $\hat{a}_i/2^{m_i}$, the nearest integer multiple of $2^{-m_i} \rightarrow \hat{p}(x) = \frac{\hat{a}_0}{2^{m_0}} + \frac{\hat{a}_1}{2^{m_1}}x + \dots + \frac{\hat{a}_n}{2^{m_n}}x^n$.

Problem: \hat{p} not necessarily a minimax approx. of f among the polynomials of \mathcal{P}_n^m .

Approximation of the function \cos over $[0, \pi/4]$ by a degree-3 polynomial

Maple or Sollya tell us that the polynomial

 $p = 0.9998864206 + 0.00469021603x - 0.5303088665x^2 + 0.06304636099x^3$

is ~ the best approximant to cos. We have $\varepsilon = ||\cos -p||_{[0,\pi/4]} = 0.0001135879...$

We look for $a_0, a_1, a_2, a_3 \in \mathbb{Z}$ such that

$$\max_{0 \le x \le \pi/4} \left| \cos x - \left(\frac{a_0}{2^{12}} + \frac{a_1}{2^{10}}x + \frac{a_2}{2^6}x^2 + \frac{a_3}{2^4}x^3 \right) \right|$$

is minimal.

Approximation of the function \cos over $[0, \pi/4]$ by a degree-3 polynomial

Maple or Sollya tell us that the polynomial

 $p = 0.9998864206 + 0.00469021603x - 0.5303088665x^2 + 0.06304636099x^3$

is ~ the best approximant to cos. We have $\varepsilon = ||\cos -p||_{[0,\pi/4]} = 0.0001135879...$ We look for $a_0, a_1, a_2, a_3 \in \mathbb{Z}$ such that

$$\max_{0 \le x \le \pi/4} \left| \cos x - \left(\frac{a_0}{2^{12}} + \frac{a_1}{2^{10}}x + \frac{a_2}{2^6}x^2 + \frac{a_3}{2^4}x^3 \right) \right|$$

is minimal.

The naive approach gives the polynomial $\hat{p} = \frac{2^{12}}{2^{12}} + \frac{5}{2^{10}}x - \frac{34}{2^6}x^2 + \frac{1}{2^4}x^3$. We have $\hat{\varepsilon} = ||\cos -\hat{p}||_{[0,\pi/4]} = 0.00069397....$

Applications

Two targets:

- specific hardware implementations in low precision (~ 15 bits). Reduce the cost (time and silicon area) keeping a correct accuracy;
- single or double IEEE precision software implementations. Get very high accuracy keeping an acceptable cost (time and memory).

Statement of the problem

Let $f: [a, b] \to \mathbb{R}, n \in \mathbb{N}, m = (m_i)_{0 \le i \le n}$ a finite sequence of rational integers, $p(x) = p_0 + p_1 x + \dots + p_n x^n$ the minimax approx. of f over [a, b] (Remez). Let

$$\mathcal{P}_{n}^{m} = \left\{ q(x) = \frac{a_{0}}{2^{m_{0}}} + \frac{a_{1}}{2^{m_{1}}}x + \dots + \frac{a_{n}}{2^{m_{n}}}x^{n}; a_{i} \in \mathbb{Z}, \forall i \right\}.$$

Every p_i rounded to $\hat{a}_i/2^{m_i}$, the nearest integer multiple of $2^{-m_i} \rightarrow \hat{p}(x) = \frac{\hat{a}_0}{2^{m_0}} + \frac{\hat{a}_1}{2^{m_1}}x + \dots + \frac{\hat{a}_n}{2^{m_n}}x^n$.

Statement of the problem

Let $f: [a, b] \to \mathbb{R}, n \in \mathbb{N}, m = (m_i)_{0 \le i \le n}$ a finite sequence of rational integers, $p(x) = p_0 + p_1 x + \dots + p_n x^n$ the minimax approx. of f over [a, b] (Remez). Let

$$\mathcal{P}_{n}^{m} = \left\{ q(x) = \frac{a_{0}}{2^{m_{0}}} + \frac{a_{1}}{2^{m_{1}}}x + \dots + \frac{a_{n}}{2^{m_{n}}}x^{n}; a_{i} \in \mathbb{Z}, \forall i \right\}.$$

Every p_i rounded to $\hat{a}_i/2^{m_i}$, the nearest integer multiple of $2^{-m_i} \rightarrow \hat{p}(x) = \frac{\hat{a}_0}{2^{m_0}} + \frac{\hat{a}_1}{2^{m_1}}x + \dots + \frac{\hat{a}_n}{2^{m_n}}x^n$. Let

$$\varepsilon = ||f - p||_{[a,b]}$$
 and $\hat{\varepsilon} = ||f - \hat{p}||_{[a,b]}$.

We compare ε to $\hat{\varepsilon}$.

Let

$$\varepsilon = ||f - p||_{[a,b]}$$
 and $\hat{\varepsilon} = ||f - \hat{p}||_{[a,b]}$.

We compare ε to $\hat{\varepsilon}$.

Given $K \in [\varepsilon, \hat{\varepsilon}]$. We search for a truncated polynomial $p^* \in \mathcal{P}_n^m$ s.t. $||f - p^*||_{[a,b]} = \min_{q \in \mathcal{P}_n^m} ||f - q||_{[a,b]}$

and

$$||f - p^\star||_{[a,b]} \le K.$$

A first approach

We put
$$p^{\star}(x) = \frac{a_0^{\star}}{2^{m_0}} + \frac{a_1^{\star}}{2^{m_1}}x + \cdots + \frac{a_n^{\star}}{2^{m_n}}x^n$$
 $(a_0^{\star}, \ldots, a_n^{\star} \in \mathbb{Z}$ are the unknowns).

- 1. We find relations satisfied by the $a_i^{\star} \Rightarrow$ finite number of candidate polynomials.
- 2. If this number is small enough, we perform an exhaustive search: computation of the norms $||f q||_{[a,b]}$, q running among the candidate polynomials.

A tool for realizing this approach: polytopes

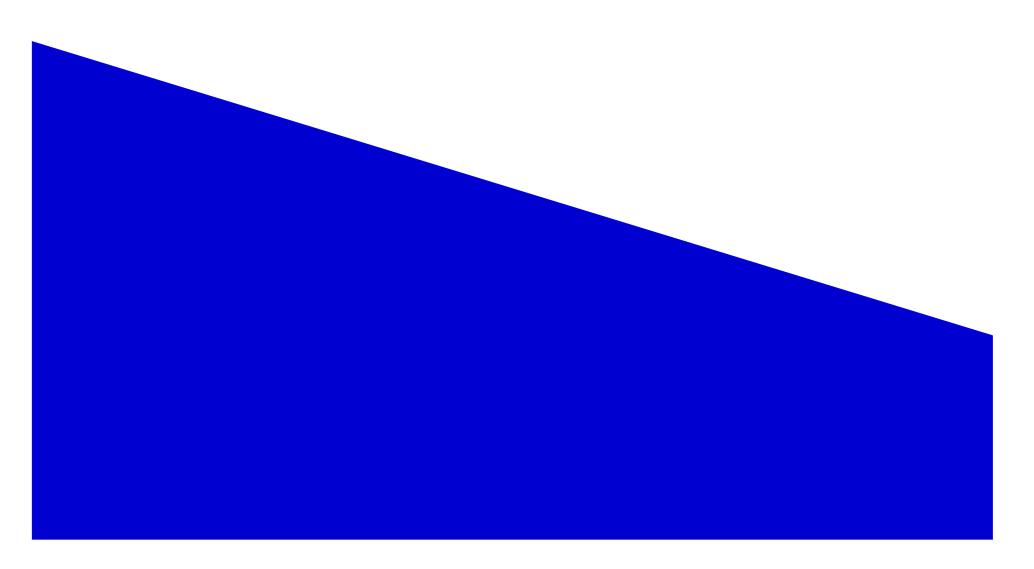
Definitions . Let $k \in \mathbb{N}$.

A polyhedron is a subset \mathfrak{P} of \mathbb{R}^k s.t. there exists a matrix $A \in \mathcal{M}_{m,k}(\mathbb{R})$ and a vector $b \in \mathbb{R}^m$ (with $m \ge 0$) s.t.

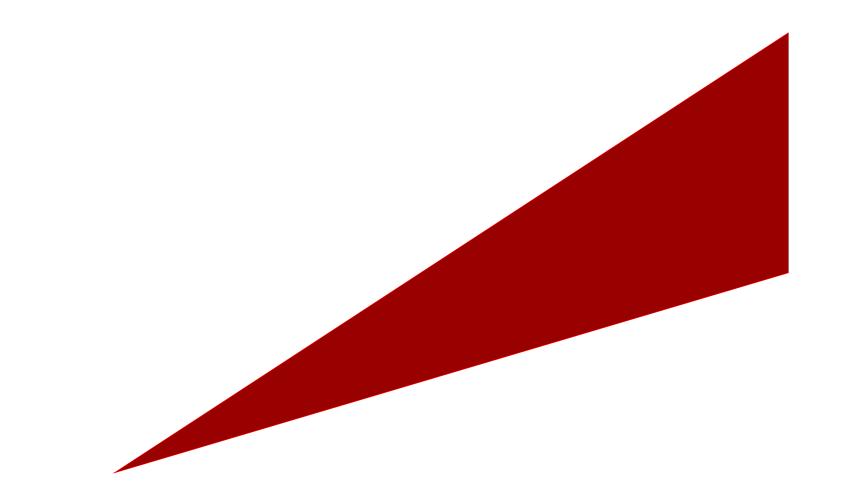
$$\mathfrak{P} = \{ x \in \mathbb{R}^k | Ax \le b \}.$$

A polytope is a bounded polyhedron.

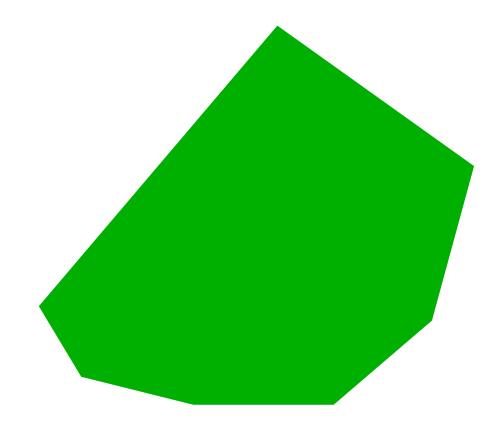
A polyhedron (resp. polytope) \mathfrak{P} is rational if it is defined by a matrix and a vector with rational coefficients.



An example of polyhedron: $\{(x, y) \in \mathbb{R}^2 : x + 3y \leq 2\}$ (half-plane in \mathbb{R}^2).



An example of polyhedron: $\{(x, y) \in \mathbb{R}^2 : 2x - 3y \le 10, x + 3y \ge 1\}$ (cone in \mathbb{R}^2).



An example of polytope.

Reminder of the problem

We put

$$\varepsilon = ||f - p||_{[a,b]}$$
 and $\hat{\varepsilon} = ||f - \hat{p}||_{[a,b]}$

We compare ε to $\hat{\varepsilon}$.

Given $K \in [\varepsilon, \hat{\varepsilon}]$. We search for a truncated polynomial $p^* \in \mathcal{P}_n^m$ s.t. $||f - p^*||_{[a,b]} = \min_{q \in \mathcal{P}_n^m} ||f - q||_{[a,b]}$ and

$$||f - p^\star||_{[a,b]} \le K.$$

For all $x \in [a, b]$, we must have

$$f(x) - K \le \sum_{i=0}^{n} \frac{a_i^{\star}}{2^{m_i}} x^i \le f(x) + K,$$
(1)

 $(a_0^{\star}, \ldots, a_n^{\star} \in \mathbb{Z}$ are the unknowns).

Idea: plug a certain number of points of [a, b] into (1) in order to construct a polytope \mathfrak{P} which the points $(a_0^{\star}, \ldots, a_n^{\star})$ belong to. Then scan the points of $\mathfrak{P} \cap \mathbb{Z}^{n+1}$.

If we want to use algorithmic tools, all the input data should belong to \mathbb{Q} .

For all $x \in [a, b]$, we must have

$$f(x) - K \le \sum_{i=0}^{n} \frac{a_i^{\star}}{2^{m_i}} x^i \le f(x) + K,$$
(2)

 $(a_0^{\star}, \ldots, a_n^{\star} \in \mathbb{Z}$ are the unknowns).

Let x = r/s with $r \in \mathbb{Z}, s \in \mathbb{N}$. We have

$$f\left(\frac{r}{s}\right) - K \le \sum_{i=0}^{n} \frac{a_i^{\star}}{2^{m_i}} \left(\frac{r}{s}\right)^i \le f\left(\frac{r}{s}\right) + K.$$

We choose $m(\frac{r}{s})$ and $M(\frac{r}{s}) \in \mathbb{Q}$ such that $m(\frac{r}{s}) \leq f(\frac{r}{s}) - K$ and $f(\frac{r}{s}) + K \leq M(\frac{r}{s})$, $m(\frac{r}{s})$ "close" to $f(\frac{r}{s}) - K$ and $M(\frac{r}{s})$ "close" to $f(\frac{r}{s}) + K$.

We plug into (2) d rational numbers from [a, b] (choice is important).

We plug into (2) d rational numbers from [a, b] (choice is important).

If $d \ge n+1 \Rightarrow$ we have a rational polytope whose the integers a_i^{\star} are elements.

Perform exhaustive research by scanning the points with integer coordinates of the polytope.

We can use C libraries (s.t. PIP) designed for efficiently scanning the integer points of polytopes.

Remark . Gives only candidates (but forgets none of them).

Method works over any [a, b].

We must have

$$f(x) - K \le \sum_{i=0}^{n} \frac{a_i^{\star}}{2^{m_i}} x^i \le f(x) + K$$
(3)

for all $x \in [a, b]$.

- **1.** Let x_1, \ldots, x_d a finite sequence of $\mathbb{Q} \cap [a, b]$.
- 2. We plug the x_k into (3). We compute rational approx. of the $f(x_k) K$ and $f(x_k) + K$.

 $d \ge n+1 \Rightarrow$ we have a rational polytope which the integers a_i^{\star} belong to.

3. Perform exhaustive search by scanning the points with integer coord. of the polytope. To do so, we use C libraries (such as PIP) designed for efficiently scanning the integer points of polytopes.

Approximation of the function \cos over $[0, \pi/4]$ by a degree-3 polynomial

Maple or Sollya tell us that the polynomial

 $p = 0.9998864206 + 0.00469021603x - 0.5303088665x^2 + 0.06304636099x^3$

is ~ the best approximant to cos. We have $\varepsilon = ||\cos -p||_{[0,\pi/4]} = 0.0001135879...$ We look for $a_0, a_1, a_2, a_3 \in \mathbb{Z}$ such that

 $\max_{0 \le x \le \pi/4} \left| \cos x - \left(\frac{a_0}{2^{12}} + \frac{a_1}{2^{10}}x + \frac{a_2}{2^6}x^2 + \frac{a_3}{2^4}x^3 \right) \right|$

is minimal.

The naive approach gives the polynomial $\hat{p} = \frac{2^{12}}{2^{12}} + \frac{5}{2^{10}}x - \frac{34}{2^6}x^2 + \frac{1}{2^4}x^3$. We have $\hat{\varepsilon} = ||\cos -\hat{p}||_{[0,\pi/4]} = 0.00069397....$

Best approximant:

$$p^{\star} = \frac{4095}{2^{12}} + \frac{6}{2^{10}}x - \frac{34}{2^6}x^2 + \frac{1}{2^4}x^3$$

which gives a distance to \cos , $||\cos -p^{\star}||_{[0,\pi/4]}$, equal to 0.0002441406250.

In this example, we gain $-\log_2(0.35) \approx 1.5$ bits of accuracy.

The polytope method is flexible!

We can add some constraints (fix values of some coef. for instance) or use "weighted" infinite norms.

Examples.

- We can restrict our search to odd truncated polynomials $\sum_{i=0}^{n} \frac{a_i^{\star}}{2^{m_i}} x^{2i+1}$.
- We can restrict our search to truncated polynomials whose constant term is 1, we consider $1 + \sum_{i=1}^{n} \frac{a_i^{\star}}{2^{m_i}} x_k^i$.
- We can search for a best truncated polynomial for the relative error $||\cdot||_{rel,[a,b]}$ defined by

$$|f - p||_{rel,[a,b]} = \sup_{a \le x \le b} \left| \frac{p(x)}{f(x)} - 1 \right|.$$

This method gives a best polynomial for a given sequence of m_i .

It should make it possible to tackle with degree-8 or 10 polynomials: this is nice for hardware-oriented applications but not satisfying for all software-oriented applications.

Another drawback: we need to have a good insight of the error K.

- if *K* is underestimated, there won't be any solution found,
- if *K* is overestimated, there might be far too many candidates: it becomes untractable.

We designed a tool for getting a relevant estimate of K.

This tool proved to give more than expected.

A second approach through lattice basis reduction

A reminder on lattice basis reduction

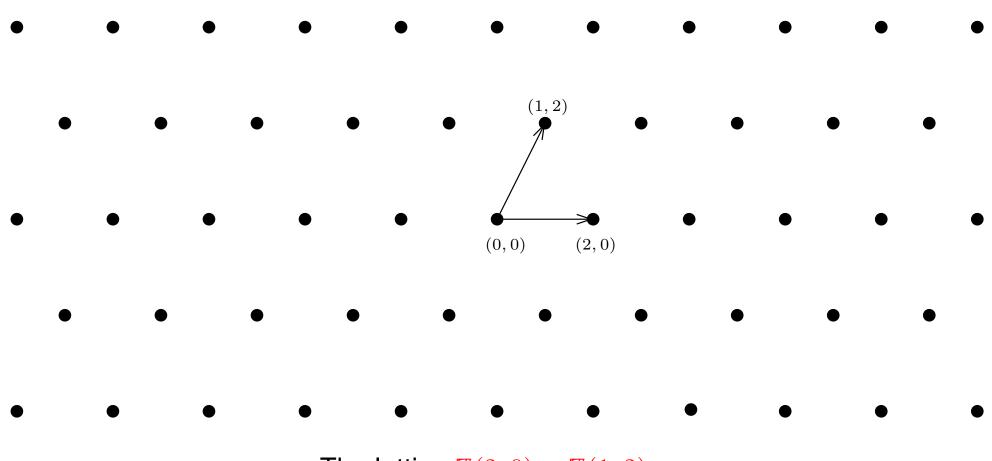
Definition. Let *L* be a nonempty subset of \mathbb{R}^d , *L* is a lattice iff there exists a set of vectors $b_1, \ldots, b_k \mathbb{R}$ -linearly independent such that

 $L = \mathbb{Z}.b_1 \oplus \cdots \oplus \mathbb{Z}.b_k.$

 (b_1,\ldots,b_k) is a basis of the lattice L.

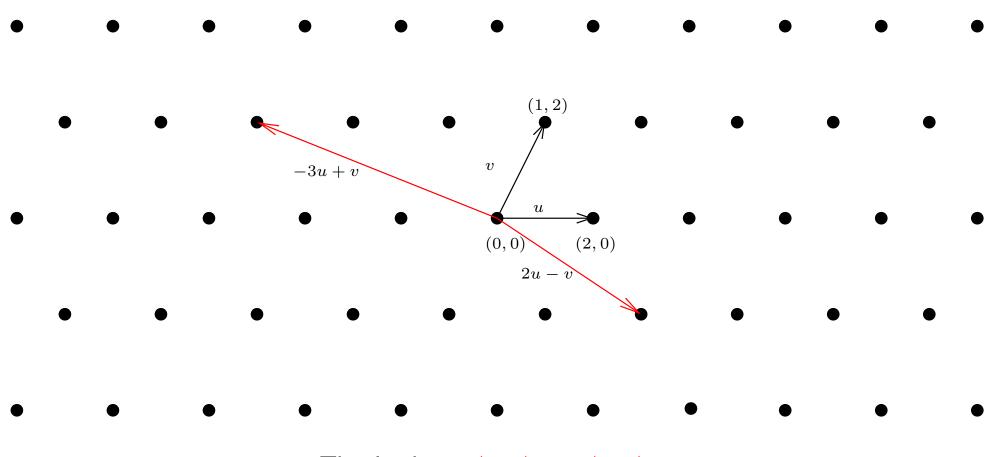
Examples. \mathbb{Z}^d , every subgroup of \mathbb{Z}^d .

Remark. We say that a lattice *L* is integer (resp. rational) when $L \in \mathbb{Z}^d$ (resp. \mathbb{Q}^d).



The lattice $\mathbb{Z}(2,0)\oplus\mathbb{Z}(1,2).$

Proposition. If (e_1, \ldots, e_k) and (f_1, \ldots, f_j) are two free families that generate the same lattice, then k = j (rank of the lattice) and there exists a $k \times k$ -dimensional matrix M, with integer coefficients, and determinant equal to ± 1 such that $(e_i) = (f_i)M$.



The lattice $\mathbb{Z}(2,0) \oplus \mathbb{Z}(1,2)$.

Proposition. If (e_1, \ldots, e_k) and (f_1, \ldots, f_j) are two free families that generate the same lattice, then k = j (rank of the lattice) and there exists a $k \times k$ -dimensional matrix M, with integer coefficients, and determinant equal to ± 1 such that $(e_i) = (f_i)M$.

There exists an infinity of bases (if $k \ge 2$) but some are more interesting than others.

Let $x = (x_1, \ldots, x_d)$ and $y = (y_1, \ldots, y_d) \in \mathbb{R}^d$, then

$$(x|y) = x_1y_1 + \dots + x_dy_d.$$

We set
$$||x|| = (x|x)^{1/2} = (x_1^2 + \dots + x_d^2)^{1/2}$$
 and $||x||_{\infty} = \max_{1 \le i \le d} |x_i|$.

There are several notions of what a "good" basis is but most of the time, it is required that it is made of short vectors.

Shortest vector problem

Problem (SVP) Given a basis of a rational lattice L, find a shortest nonzero vector of L.

Associated approximation problem: find $v \in L \setminus \{0\}$ s.t. $||v|| \leq \gamma \lambda_1(L)$ where $\gamma \in \mathbb{R}$ is fixed and $\lambda_1(L)$ denotes the norm of a shortest nonzero vector of L.

Theorem. [Ajtai (1997), Miccianco (1998)] The problem of finding a vector v s.t. $||v|| = \lambda_1(L)$ is NP-hard under randomized polynomial reductions, and remains NP-hard if we tolerate an approximation factor $< \sqrt{2}$.

Closest vector problem

Problem . (CVP) Given a basis of a rational lattice L and $x \in \mathbb{R}^d$, find $y \in L$ s.t. ||x - y|| = dist(x, L).

Associated approximation problem: find $y \in L \setminus \{0\}$ s.t. $||x - y|| \le \gamma \operatorname{dist}(x, L)$ where $\gamma \in \mathbb{R}$ is fixed.

Emde Boas (1981) : CVP is NP-hard

Lenstra-Lenstra-Lovász algorithm

Factoring Polynomials with Rational Coefficients, A. K. LENSTRA, H. W. LENSTRA AND L. LOVÁSZ, Math. Annalen **261**, 515-534, 1982.

Theorem . Let L a lattice of rank k.

LLL provides a basis (b_1, \ldots, b_k) made of "pretty" short vectors. We have $||b_1|| \leq 2^{(k-1)/2} \lambda_1(L)$ where $\lambda_1(L)$ denotes the norm of a shortest nonzero vector of *L*.

LLL terminates in at most $O(k^6 \ln^3 B)$ operations with $B \ge ||b_i||^2$ for all *i*.

Remark. In practice, the returned basis is of better quality and given faster than expected.

Absolute error problem

We search for (one of the) best(s) polynomial of the form

$$p^{\star} = \frac{a_0^{\star}}{2^{m_0}} + \frac{a_1^{\star}}{2^{m_1}}X + \dots + \frac{a_n^{\star}}{2^{m_n}}X^n$$

(where $a_i^{\star} \in \mathbb{Z}$ and $m_i \in \mathbb{Z}$) that minimizes $||f - p||_{[a, b]}$.

Discretize the continuous problem: we choose x_1, \dots, x_d points in [a, b] such that $\frac{a_0^{\star}}{2^{m_0}} + \frac{a_1^{\star}}{2^{m_1}}x_i + \dots + \frac{a_n^{\star}}{2^{m_n}}x_i^n$ as close as possible to $f(x_i)$ for all $i = 1, \dots, d$.

That is to say we want the vectors

$$\begin{pmatrix} \frac{a_{0}^{\star}}{2^{m_{0}}} + \frac{a_{1}^{\star}}{2^{m_{1}}}x_{1} + \dots + \frac{a_{n}^{\star}}{2^{m_{n}}}x_{1}^{n} \\ \frac{a_{0}^{\star}}{2^{m_{0}}} + \frac{a_{1}^{\star}}{2^{m_{1}}}x_{2} + \dots + \frac{a_{n}^{\star}}{2^{m_{n}}}x_{2}^{n} \\ \vdots \\ \frac{a_{0}^{\star}}{2^{m_{0}}} + \frac{a_{1}^{\star}}{2^{m_{1}}}x_{d} + \dots + \frac{a_{n}^{\star}}{2^{m_{n}}}x_{d}^{n} \end{pmatrix} \text{ and } \begin{pmatrix} f(x_{1}) \\ f(x_{2}) \\ \vdots \\ f(x_{d}) \end{pmatrix}$$

to be as close as possible, which can be rewritten as: we want the vectors

$$a_{0}^{\star}\underbrace{\left(\begin{array}{c}\frac{1}{2^{m_{0}}}\\\frac{1}{2^{m_{0}}}\\\frac{1}{2^{m_{0}}}\\\frac{1}{2^{m_{0}}}\\\frac{1}{2^{m_{0}}}\end{array}\right)}_{\overrightarrow{v_{0}}} + a_{1}^{\star}\underbrace{\left(\begin{array}{c}\frac{x_{1}}{2^{m_{1}}}\\\frac{x_{2}}{2^{m_{1}}}\\\frac{x_{2}}{2^{m_{1}}}\\\frac{1}{2^{m_{1}}}\\\frac{x_{d}}{2^{m_{1}}}\end{array}\right)}_{\overrightarrow{v_{1}}} + \dots + a_{n}^{\star}\underbrace{\left(\begin{array}{c}\frac{x_{1}^{n}}{2^{m_{n}}}\\\frac{x_{2}^{n}}{2^{m_{n}}}\\\frac{x_{d}}{2^$$

to be as close as possible.

We have to minimize
$$||a_0^{\star} \overrightarrow{v_0} + \cdots + a_n^{\star} \overrightarrow{v_n} - \overrightarrow{y}||$$
.

We have to minimize $||a_0^{\star} \overrightarrow{v_0} + \cdots + a_n^{\star} \overrightarrow{v_n} - \overrightarrow{y}||$.

This is a closest vector problem in a lattice !

It is NP-hard : LLL algorithm gives an approximate solution.

Focus on the method

We search for (one of the) best(s) polynomial of the form

$$p^{\star} = \frac{a_0^{\star}}{2^{m_0}} + \frac{a_1^{\star}}{2^{m_1}}X + \dots + \frac{a_n^{\star}}{2^{m_n}}X^n$$

(where $a_i^{\star} \in \mathbb{Z}$ and $m_i \in \mathbb{Z}$) that minimizes $\|f - p\|_{[a, b]}$.

Choose *d* points in [a, b]: x_1, \dots, x_d .

Our problem is to have $\frac{a_0^{\star}}{2^{m_0}} + \frac{a_1^{\star}}{2^{m_1}}x_i + \cdots + \frac{a_n^{\star}}{2^{m_n}}x_i^n$ as close as possible to $f(x_i)$ for all $i = 1, \ldots, d$.

Here again, the choice of the points is critical (it relies on some preliminary computations: linear programming and best polynomial approximation computation).

Applying our method to Intel's erf code

erf is defined by
$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
 for all $x \in \mathbb{R}$.

- We looked at Intel's erf code on the interval [1; 2]: it uses an argument reduction and the final problem is to approximate erf(x + 1) on [0; 1] with a polynomial to obtain an accuracy of 64 bits.
- Intel uses a polynomial of degree 19 with 20 extended-double coefficients.

How we can improve it

- We can't use a smaller degree because even the minimax polynomial of degree 18 doesn't provide a sufficient accuracy. But we can reduce the size of the coefficients.
- We search for polynomials using the most possible number of double coefficients.

Result

We get, almost instantaneously, a polynomial approximant

- with only two extended-double coefficients,
- that provides the same accuracy as the one with 20 extended-double coefficients, currently used in Intel's code.
- This leads to smaller tables, faster cache loading time.

Summary

- We've just seen that our method is able to give us a smaller (in term of degree and/or size of the coefficients) polynomial providing the same accuracy.
- But we can also use it to find a much better polynomial (in term of accuracy) with same precision for the coefficients than the rounded minimax.
- Let's look at an example from CRLibm.

An example from CRlibm

 CRlibm is a library designed to compute correctly rounded functions in an efficient way (target : IEEE double precision).

```
http://lipforge.ens-lyon.fr/www/crlibm/
```

- It uses specific formats such as double-double or triple-double.
- Here is an example we worked on with C. Lauter, and which is used to compute $\arcsin(x)$ on [0.79; 1].

Arcsine function

• After argument reduction we have the problem to approximate

$$g(z) = \frac{\arcsin(1 - (z + m)) - \frac{\pi}{2}}{\sqrt{2 \cdot (z + m)}}$$

where $0xBFBC28F800009107 \le z \le 0x3FBC28F7FFF6EF1$ (i.e. approximately $-0.110 \le z \le 0.110$) and $m = 0x3FBC28F80000910F \simeq 0.110$.

Datas

Target accuracy to achieve correct rounding : 2^{-119} .

The minimax of degree 21 is sufficient (error = $2^{-119.83}$).

Each approximant is of the form

$$\underbrace{p_{0}}_{t.d.} + \underbrace{p_{1}}_{t.d.} x + \underbrace{p_{2}}_{d.d.} x^{2} + \underbrace{\cdots}_{\cdots} + \underbrace{p_{9}}_{d.d.} x^{9} + \underbrace{p_{10}}_{d.} x^{10} + \underbrace{\cdots}_{\cdots} + \underbrace{p_{21}}_{d.} x^{21}$$

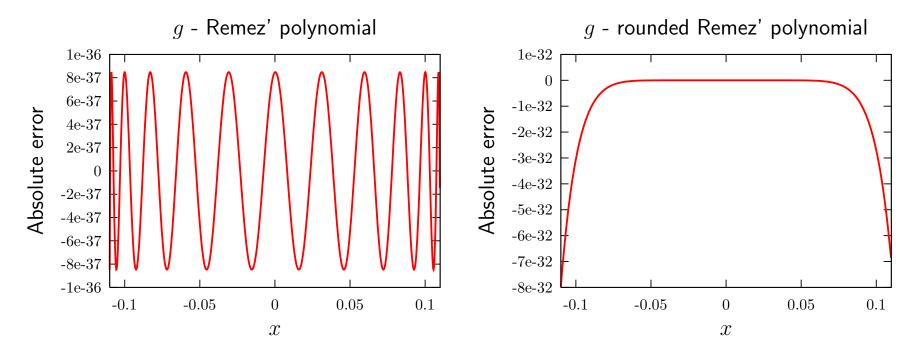
where the p_i are either double precision numbers (d.), a sum of two double precision numbers (d.d.), a sum of two double precision numbers (t.d.).

Figure 1: binary logarithm of the absolute error of several approximants

Target	-119
Minimax	-119.83
Rounded minimax	-103.31
Our polynomial	-119.77

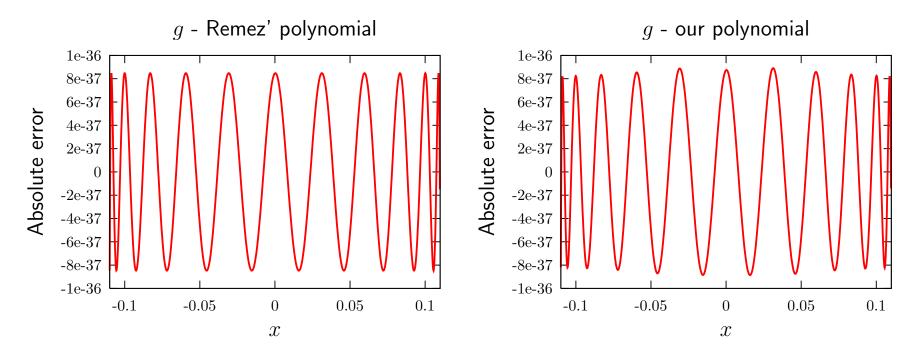
Exact minimax, rounded minimax, our polynomial

We save 16 bits with our method.



Exact minimax, rounded minimax, our polynomial

We save 16 bits with our method.



Conclusion

- Two methods which improve the results provided by existing Remez' based method.
 - The first method, based on linear programming, gives a best polynomial possible (for a given sequence of m_i).
 - The second method, based on lattice basis reduction, much faster and more efficient than the first one, gives a very good approximant. We use linear programming to show that the error provided by this approach is tight.
 - All these tools are or shall be part of the free software Sollya http: //sollya.gforge.inria.fr/. Sollya is a tool environment for safe floating-point code development.
- Can be adapted to several kind of coefficients (fixed-point format, multidouble, classical floating point arithmetic with several precision formats).